Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
${ }^{\text {a }}$ School of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia,
${ }^{\text {b } X \text {-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: aibi@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.059$
$w R$ factor $=0.162$
Data-to-parameter ratio $=25.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(N-butyl- N-ethyldithiocarbamato)bismuth(III)

The Bi atom in the title compound, $\left[\mathrm{Bi}\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{3}\right]$, is coordinated by six S atoms from three bidentate N -butyl -N ethyldithiocarbamate ligands; it is also engaged in an additional $\mathrm{Bi} \cdots \mathrm{S}$ interaction which links two tris(N-butyl- N ethyldithiocarbamato)bismuth fragments into centrosymmetric binuclear dimers. Thus, each of the Bi atoms in the dimer has a distorted pentagonal-bipyramidal environment, with one short axial $\mathrm{Bi}-\mathrm{S}$ distance of 2.608 (2) \AA, one long axial $\mathrm{Bi} \cdots \mathrm{S}$ interaction of 3.334 (2) \AA, and five 'regular' equatorial bonds in the range 2.819 (2)-2.867 (2) \AA.

Comment

The tris(dithiocarbamato)bismuth(III) and tris(dithiocarbamato)antimony(III) complexes generally have the chelated metal atom with a capped octahedral geometry, since the lone pair of electrons is stereochemically active (Raston \& White, 1976; Venkatachalam et al., 1997). Our recent study of the tris(2-hydroxyethylisopropyl)bismuth complex has confirmed this geometry for the metal atom (Low et al., 2001).

(I)

The nature of the substituents in the dithiocarbamate group appears to affect the stereochemical activity; the Bi atom in the title compound, (I) (Fig. 1), is seven-coordinated and has a distorted pentagonal-bipyramidal environment, with one short axial distance $[\mathrm{Bi} 1-\mathrm{S} 42.608$ (2) \AA], one long axial interaction [Bi1‥S5 3.334 (2) \AA; symmetry code: (i) $1-x$, $1-y, 1-z$], and five 'regular' equatorial bonds [2.819 (2)2.867 (2) A]; the angle formed by two axial bonds, S4$\mathrm{Bi} 1 \cdots \mathrm{~S} 5^{\mathrm{i}}$, is 141.0 (1) \AA. The long axial $\mathrm{Bi} 1 \cdots \mathrm{~S} 5^{\mathrm{i}}$ interaction links two adjacent tris(N-butyl- N-ethyldithiocarbamato)bismuth fragments into a centrosymmetric dinuclear entity (Fig. 2).

Experimental

Bismuth trichloride ($3.15 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in a small volume of ethanol. The solution was cooled in an ice bath, then ethylbutylamine ($3.03 \mathrm{~g}, 30 \mathrm{mmol}$) and an excess of carbon disulfide (2 ml) were added; the mixture was stirred for several hours. The solid which separated had a melting point of 396-397 K. Elemental analysis,

Received 19 September 2002 Accepted 19 November 2002 Online 30 November 2002
found: C 33.94, $\mathrm{H}, 4.93, \mathrm{~N} 5.69, \mathrm{~S} 26.94 \%$; calculated for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{BiN}_{3} \mathrm{~S}_{6}: \mathrm{C} 31.48$, H 5.74, N $5.70 \mathrm{~S} 26.07 \%$.

Crystal data

$\left[\mathrm{Bi}\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{3}\right]$
$M_{r}=737.92$
Triclinic, $P \overline{1}$
$a=10.5120$ (1) A
$b=10.5128$ (1) \AA
$c=14.5755(1) \AA$
$\alpha=99.713(1)^{\circ}$
$\beta=99.927$ (1) ${ }^{\circ}$
$\gamma=103.383(1)^{\circ}$
$V=1506.52(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.627 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8192 \\
& \quad \text { reflections } \\
& \theta=1.5-28.3^{\circ} \\
& \mu=6.28 \mathrm{~mm}^{-1} \\
& T=183(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.30 \times 0.26 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.254, T_{\text {max }}=0.433$
11016 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.162$
$S=1.07$
7197 reflections
280 parameters
7197 independent reflections
6368 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-13 \rightarrow 12$
$l=-17 \rightarrow 19$

Table 1
Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$.

Bi1-S1	$2.834(2)$	$\mathrm{Bi} 1-\mathrm{S} 5$	$2.867(2)$
$\mathrm{Bi} 1-\mathrm{S} 2$	$2.858(2)$	$\mathrm{Bi} 1-\mathrm{S} 6$	$2.819(2)$
$\mathrm{Bi} 1-\mathrm{S} 3$	$2.830(2)$	$\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$3.334(2)$
$\mathrm{Bi} 1-\mathrm{S} 4$	$2.608(2)$		
$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 2$	$62.8(1)$	$\mathrm{S} 3-\mathrm{Bi} 1-\mathrm{S} 6$	$138.0(1)$
$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 3$	$137.5(1)$	$\mathrm{S} 4-\mathrm{Bi} 1-\mathrm{S} 5$	$86.2(1)$
$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 4$	$88.1(1)$	$\mathrm{S} 4-\mathrm{Bi} 1-\mathrm{S} 6$	$93.9(1)$
$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 5$	$135.6(1)$	$\mathrm{S} 5-\mathrm{Bi} 1-\mathrm{S} 6$	$63.1(1)$
$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 6$	$73.4(1)$	$\mathrm{S} 4-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$141.0(1)$
$\mathrm{S} 2-\mathrm{Bi} 1-\mathrm{S} 3$	$81.1(1)$	$\mathrm{S} 6-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$114.2(1)$
$\mathrm{S} 2-\mathrm{Bi} 1-\mathrm{S} 4$	$85.4(1)$	$\mathrm{S} 3-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$74.9(1)$
$\mathrm{S} 2-\mathrm{Bi} 1-\mathrm{S} 5$	$159.5(1)$	$\mathrm{S} 1-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$124.5(1)$
$\mathrm{S} 2-\mathrm{Bi} 1-\mathrm{S} 6$	$136.1(1)$	$\mathrm{S} 2-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$91.4(1)$
$\mathrm{S} 3-\mathrm{Bi} 1-\mathrm{S} 4$	$66.2(1)$	$\mathrm{S} 5-\mathrm{Bi} 1-\mathrm{S} 5^{\mathrm{i}}$	$83.5(1)$
$\mathrm{S} 3-\mathrm{Bi} 1-\mathrm{S} 5$	$78.4(1)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.
Although the cell dimensions define almost exactly a C-centered monoclinic lattice $\left(\beta=89.87^{\circ}\right)$, the structure does not have true monoclinic symmetry ($R_{\text {int }}=0.468$) and was solved and refined as triclinic. The $\mathrm{C}-\mathrm{C}$ distances in the ethyl and butyl groups were restrained to $1.54 \pm 0.01 \AA$; in the butyl chain, an additional restriction of $\mathrm{C} \cdots \mathrm{C}=2.51 \pm 0.01 \AA$ was used. The $\mathrm{N}-\mathrm{C}_{\text {alkyl }}$ distances in each dithiocarbamate unit were restrained to be equal to each other by a SADI 0.01 instruction in SHELXL97. The H atoms were positioned geometrically and allowed to ride on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene H atoms and $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms. The final difference Fourier map had a large peak and hole near the Bi atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figure 1
ORTEPII (Johnson, 1976) plot of the molecule of the title compound; displacement ellipsoids are drawn at the 50% probability level. The long $\mathrm{Bi} \cdots \mathrm{S}$ interaction is shown as a dashed line. H atoms are drawn as spheres of arbitrary radii.

Figure 2
The centrosymmetric binuclear aggregates in the structure of the title compound. Only Bi and S atoms are shown; displacement ellipsoids are drawn at the 50% probability level.

We thank the National Science Council for R \& D (IRPA 09-02-02-0096 and 305/PFIZIK/610961), Universiti Kebangsaan Malaysia and the University of Malaya (F0717/2002A) for supporting this work.

References

Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Low, K. Y., Baba, I., Farina, Y., Othman, A. H., Ibrahim, A. R., Fun, H.-K. \& Ng, S. W. (2001). Main Group Met. Chem. 24, 451-452.
Raston, C. L. \& White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 791-794. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Venkatachalam, V., Ramalingam, R., Sasellato, U. \& Graziani, R. (1997). Polyhedron, 16, 1211-1221.

